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Abstract
Coffee ground wastes (CGW) are by-products from the coffee-making processes. In this study, we propose to valorize them 
in construction materials at large scale. In particular, we investigate the mechanical and hygrothermal performances of 
earthen cob construction with incorporation of various amounts of CGW. Our results indicate that adding coffee grounds 
to cob enhances its hygrothermal performances as well as its compressive strength. An interesting enhancement of the 
lightened earth thermal characteristics as well as a good control of the hydric load in the air while maintaining acceptable 
mechanical properties is observed. Numerical analysis is used to evaluate the hygrothermal behavior of cob specimens to 
better understand their energy performances. A simplification of the simulation methods using a linearization of the sorption 
curve is incorporated to reduce calculation times and optimize outputs. The method is validated using experimental data, 
which shows a promising improvement compared to previous approaches. The proposed method can be faithfully applied 
to the study of hygrothermal behavior of biomaterials, which is strongly related to the building energy performance and the 
investigation of their durability in a fast and efficient way.

Keywords  Bio-based building materials · Mechanical/hygrothermal behavior · Linearized sorption curve ·  
Numerical simulation · Hysteresis effect

1  Introduction

Earthen building has been existing for several ten thousand 
years in North-Africa and the Middle East, and numerous 
old earthen structures remain present today [1]. Earthen 
construction refers to the use of earth as a primary building 
material. It may be seen as a stand-alone natural construction 
concept or as a collection of techniques that ensure higher 
hygrothermal, durability, and environmental sustainability 
to more standard contemporary construction methods [2]. 
Communities and people all around the globe are using earth 

building to limit their impacts to greenhouse gas emissions 
and global warming [3]. Typical earth-building methods that 
employ soil as a construction material include adobe or mud 
brick, rammed earth, cob, poured earth, and pressed earth 
[4]. Cob is the most traditional earth-building technique in 
Normandy (France) and Britany, which incorporates earth, 
sand, water, and fibers [5]. Cob is a traditional building 
method that employs hand-formed earthen clods combined 
with sand and fibers such as straw and reed. Fibrous materi-
als, such as reed, are commonly utilized to prevent autog-
enous shrinkage in earth materials and give the optimum 
thermal performance. Several investigations have found that 
lightened earth mixtures have a great potential to interact 
with moisture. Earth–straw and earth–hemp combinations 
are among the insulating materials with the greatest degree 
of water buffering value and a good capacity of a material 
to manage the humidity of a space.

The structural behavior of cob buildings can be influ-
enced by a variety of environmental conditions. Increased 
water content (due to rising humidity or a leaking roof) 
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weakens the mechanical properties of the material and lead 
to the swelling of the fibers. Voids or micro-cracks can be 
generated at the fiber–matrix interface [6]. Due to the high 
fiber content, insects and rats can tunnel deep into cob walls 
[6]. All of these factors wreak havoc on cob walls' overall 
structural integrity. Furthermore, clay soil used tradition-
ally for cob building has differential settlements, weak shear 
strength, and high compressibility [6], all of which must be 
stabilized to optimize mechanical performance [5]. Stabi-
lization by chemicals or minerals is a new method for this 
purpose [2]. To stabilize clayey soil, cementitious binders 
such as portland cement, fly ash, and silica fume can be 
used. When these binders are applied to the soil–water or 
soil–fiber–water complex, they trigger a series of short and 
long-term chemical reactions that promote soil element floc-
culation, resulting in significant increases in composite stiff-
ness and shear strength [7]. Despite their efficiency in terms 
of stability, cementitious binders are widely recognized as 
not being environmentally friendly. Significant energy and 
carbon emission footprints are usually worsened with their 
use [8]. According to literature, synthetic or natural poly-
mers, resins, and sulfonated oils are promising replacement 
materials capable of meeting both geotechnical and sustain-
ability requirements [9]. Polymers, like traditional cementi-
tious binders, can facilitate the flocculation and hydration 
of clay particles via a variety of clay–polymer interaction 
mechanisms, such as (a) van der Waals or hydrogen bond-
ing, (b) charge neutralization (via electrostatic attraction), 
and (c) cationic bridging for neutral, cationic, and anionic 
polymers [10].

Among the currently available polymer-based soil stabi-
lizers, biopolymers, which are made from natural resources, 
appear to offer a variety of intriguing soil physical prop-
erties, outperforming synthetic counterparts in terms of 
sustainability [11]. Lignin is a biopolymer that is found in 
the highest concentration of plants biomass [12]. The enzy-
matic dehydrogenation of coumaryl, coniferyl, and sinapyl 
alcohols and subsequent radical polymerization produce 
this biopolymer with a great structural diversity. Hardness, 
resistance to microbial assaults, and oxidative stress are all 
aspects of this heterostructure, which makes biodegradation 
more difficult. One of the not exploited sources of lignin is 
coffee ground wastes (CGW) [13], an abundant and often 
discarded household and industrial waste, a potentially rich 
source of products and energy. The physicochemical proper-
ties of CGW enable its re-use in a variety of applications, as 
a biorefinery feedstock due to the presence of useful chemi-
cal compounds, as a raw material in the production of acti-
vated carbon or as a biosorbent in pollutant removal from 
gas or liquid due to its surface characteristics [13]. Imple-
menting ecologically friendly methods based on coffee waste 
requires a greater understanding of its physicochemical 

features [13]. These latter usually depend on plant species, 
soils and growing conditions and subsequent preparations.

Coffee has become the second most traded commodity 
in the world after oil, and the second most popular liquid 
after water. Coffee industry is present in 80 countries and 
employs around 100 million people [14]. The International 
Coffee Organization (ICO) predicted in 2020 that coffee con-
sumption would rise from 1.24 to 169.34 million bags in 
10 years [15]. According to these statistics, a large amount 
of CGW will be produced, which will be released as house-
hold or industrial waste and cause environmental issues, due 
to their polyphenols, tannins, and caffeine contents, making 
them hazardous residue [16]. Coffee waste is lignocellu-
losic biomass, predominantly containing carbon, hydrogen, 
oxygen and nitrogen atoms, which form cellulose (59–63 
wt%), lignin (20–26 wt%), and hemicellulose (5–10 wt%) 
[16]. However, because this material has already undergone 
a hydrothermal extraction procedure, the content of these 
compounds is often minimal in comparison to lignocellu-
losic constituents (10 wt%). Furthermore, inorganic micro-
nutrients, such as magnesium, calcium, or salt, are com-
monly present in most coffee wastes, but their quantities are 
typically less than 5% dry weight [17].

The hygrothermal behavior of cob buildings is related to 
several parameters that are sometimes uncontrollable. Find-
ing a reliable model describing the hygrothermal behavior 
of building is a challenging task. Indeed, their dynamics 
are defined by complex and non-linear processes governed 
by their environment. The modeling of fully coupled heat 
and mass transfers in building envelopes is based on sev-
eral phenomenological approaches, which differ usually in 
the transfer potentials used. For heat transfer, in particular, 
the temperature is referred to a conventional transfer poten-
tial. Regarding moisture transfer, several models have been 
used with different mass transfer driving forces like water 
content [18], vapor pressure [19], vapor content [20], and 
relative humidity [21].

However, the main difficulty in using physical models to 
simulate the full hygrothermal behavior lies in the determi-
nation of the sorption curve hysteresis. Several models for 
hysteresis effects on moisture content have been mentioned 
in Hamdaoui et al. 2021 [22] to estimate the hygrothermal 
behavior of low-carbon buildings. The sorption hysteresis 
is often neglected in the standard numerical simulations at 
both wall and building scales. From the few models taking 
account of the sorption hysteresis [23], the simplified one of 
Mualem [24, 25] considers that no pore interactions occur 
and has been used in many works [26, 27].

Several numerical tools are used in the literature to take 
into account the hysteresis effect such as COMSOL Mul-
tiphysics, EnergyPlus and WUFI Plus. For instance Alioua 
et al. [21] used COMSOL Multiphysics to simulate the 
hygrothermal behavior of date palm concretes (DPC). They 
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demonstrate a better moisture transfer estimation in DPC 
when including hysteresis. G. Promis et al. [26] evaluated 
both steady and transient states, with and without moisture 
hysteresis effect. Hysteresis may be ignored in steady state 
if the relative humidity range does not surpass the capillary 
condensation point. However, taking into account the hyster-
esis increases model's complexity as well as computing cost 
of the simulation [28]. Furthermore, some authors show that 
non-hysteresis modeling can result up to 20–30% error in 
moisture content prediction for wood sorption behavior [29].

To achieve the optimal balance between reducing model 
complexity [28] and increasing accuracy, in this paper we 
propose a numerical analysis of the material's hygrother-
mal behavior using linearization of the sorption curve. In 
such a way, the software can improve the outputs' reliability 
without the need of additional equations to model the hys-
teresis effect. The effect of linearization of sorption curves 
was first validated using Alioua et al. experimental data [21]. 
This method is tested on a multilayer wall based on Coffee 
Lightening Clay (CLC) and Structural Cob (SC), for which 
hygroscopic, thermal, and mechanical characterization of 
CLC and SC are carried out at different substitution levels.

The cob materials are prepared using techniques similar 
to that used in traditional German and Brittany cob construc-
tion [30]. A supplementary layer is used in this construction 
architecture. To meet construction rules, a combination of 
two walling layers made of earth materials is considered. 
Insulation wall with a high fiber content and a load bearing 
layer with a greater density make up the two layers. All of 
the examined mechanical performances, thermal, and hydric 
properties of cob walls are evaluated at laboratory scale.

2 � Methodology

After reviewing the relevant current literature, we divided 
our study into several sections, each of which being com-
posed of multiple steps, as discussed in full in the following 
sections:

•	 Formulation and experimental characterization: Two for-
mulations have been developed in this article: (i) Coffee 
Lightening Clay (CLC) and (ii) Structural Cob (SC). The 
hygroscopic, thermal, and mechanical characterization 
were carried out at different substitution levels.

•	 Experimental results of hygrothermal characteristics of 
developed materials for insulating and structural compo-
nents are investigated and discussed.

•	 Conducting a numerical simulation campaign of the 
hygrothermal behavior by simplifying the modeling 
method and taking into account the linearized hysteresis 
effect: In this step, the output numerical data are vali-

dated with Alioua et al. experimental data [21] at wall 
scale.

•	 Hygyrothermal performance evaluation and model test-
ing: Once the method is validated, we test it for a double-
layer wall (CLC and SC) using WUFI Plus software.

3 � Experimental setup and material 
elaboration

3.1 � Coffee grounds waste valorization

Coffee ground wastes (CGW) are derived from mixtures of 
Arabica coffee species, made by Jacques Vabre (Kraft Foods 
Group, Paris, France). CGW were collected from our coffee 
bar (Caen, Normandy, France). It is important to notice that 
more than 2 tons of coffee grounds are generated each year 
in our school. As soon as collected, the raw coffee ground 
wastes material was dried for 24 h at 105 °C, crushed, and 
sieved to a particle size of 63 microns. The heating tempera-
ture of 105 °C resulted in satisfactory drying of the material. 
The physical properties of CGW are summarized in Table 1.

The raw coffee ground wastes were subjected to a two-
step sequential acid hydrolysis to evaluate the proportions 
of cellulose, hemicellulose, and lignin (ash free) [31]. High-
performance liquid chromatography was used to quantify 
the sugars in the resulting solution, which were then used 
to compute the cellulose (glucose), hemicellulose (arab-
inose, mannose, galactose, and xylose) and lignin (ash-free) 
contents [32]. The average values are given, and the meas-
urement errors are estimated to less than 10%. Raw CGW 
(Table 2) contains mostly carbohydrates, cellulose and hemi-
cellulose for half its weight, with lignin as the third major 
component. Other biochemicals are 14.2% of proteins, 9.5% 
of lipids and 2.1% of ash.

Table 1   Physical properties of coffee ground wastes

Porosity (%) Bulk density (kg 
m−3)

Water absorp-
tion (%)

pH

CGW​ 52.1 468 ± 3 0.9 6.1 ± 0.01

Table 2   Biochemical composition of coffee ground wastes

Weight (wt. %)

Proteins 15.3
Cellulose 26.2
Hemicellulose 23.8
Lignin 24.9
Lipids 7.7
Ashes 2.1
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Inductively coupled plasma atomic emission spectrom-
etry (ICP-AES) estimates that the most abundant elements 
in CGWs (Table 3) are potassium and magnesium, the for-
mer accounting for 40% of the oxide ash [33], with a total 
amount for these two elements of more than 60% of all CGW 
probed elements [32].

3.2 � Natural fiber

Natural fibers were employed as reinforcement and insu-
lators parts (Table 4). The fibers used in this study were 
provided by the local farmers from Laulne (Normandy). 
For the Structural Cob (SC), we used the wheat straws. The 
wheat straws fibers have a thermal conductivity between 
0.035 and 0.054 W m−1 K−1 [5]. For the Coffee Lighten-
ing Clay (CLC) we used the reed fiber. They are readily 
accessible and affordable. Due to their fully biodegradable 
properties, as well as their weak CO2 emissions budget com-
pared to synthetic fibers, their commercialization could have 
a lower environmental impact. The usage of reed is essen-
tially appropriate as an insulating material with a thermal 
conductivity close to 0.05 W m−1 K−1 [34].

3.3 � Characterization techniques 

The analyses of soils composition were performed by X-ray 
fluorescence (XRF) technique. The Inel Equinox 3500 
spectrometer was used to collect the X-ray fluorescence 
spectra (equipped with a Cu microfocus source, a parabolic 
multilayer mirror on the primary beam, and an Amptek 
X-123SDD Silicon Drift Detector were placed vertically 
10 mm over the sample to ensure high sensitivity even with 
low-atomic-number elements). Data were collected with an 
integration time of 400 s.

X-ray powder diffraction diagram was collected using 
Cu Kα radiation (= 1.54059) selected by an incident beam 
Ge (111) monochromator on a D8 Advance Vario 1 Bruker 
instrument (2-circles diffractometer, θ–2θ Bragg–Brentano 
mode). The X-ray diffraction pattern of soil is collected for 

1 s each 0.01° step (16 h/scan) from 10° to 80°. The Full-
Pattern Search-Match (FPSM) technique and the Crystal-
lography Open Database [35] were used for quantification 
and crystalline phase identification, whereas the MAUD 
software [36] was used for Rietveld quantification.

Analysis of elements present in tap water was performed 
via The Thermo Scientific DIONEX ICS-3000 DC Ion 
Chromatography. The ion chromatography is composed by 
a dual-pump module, an eluent generator module, a chroma-
tography detector module, and an autosampler. The device 
has a 1800 psi column pressure and a 1.0 mL min−1 eluent 
flow rate. Interpolation on an appropriate calibration curve 
was used to identify and quantify the ionic species. All of the 
analyses were carried out at room temperature.

The analyses of coffee ground wastes composition were 
carried out using an Elan 6000 inductively coupled plasma 
optical emission spectrometer model Vista-Pro with axial 
view (Varian, Mulgrave, Australia). The emission intensities 
for the most sensitive lines were measured without spectral 
interference.

3.4 � Structural earth

The structural earth used in this study contains mainly 
silicon, aluminum, iron, and sodium for the major cations 
(Table 5) XRD analysis is very important to characterize the 

Table 3   Elemental composition of coffee ground wastes

Mineral Concentration 
(mg/(100 g))

Potassium (K) 273 ± 27
Magnesium (Mg) 51 ± 3
Calcium (Ca) 39 ± 3
Manganese (Mn) 1.9 ± 0.1
Copper (Cu) 1.1 ± 0.1
Sodium (Na) 1.0 ± 0.05
Iron (Fe) 0.8 ± 0.05
Zinc (Zn) 0.2 ± 0.05

Table 4   Physical properties of reed and wheat straw fibers

Diameter 
(mm)

Density (kg 
m−3)

Initial water 
content (%)

Tensile 
strength 
(MPa)

Wheat straw 1–4 1408 ± 5 10.7 23.9 ± 3.5
Reed 1–4 1294 ± 5 8.5 117 ± 9

Table 5   Chemical composition of structural soil obtained by EDX 
measures

Element Wt.%

Silicon dioxide (SiO2) 65.89
Aluminum oxide (Al2O3) 14.23
Ferric oxide (Fe2O3) 6.65
Magnesium oxide (MgO) 4.08
Potassium oxide (K2O) 2.17
Titanium dioxide (TiO2) 2.08
Calcium oxide (CaO) 1.27
Sodium oxide (Na2O) 1.11
Manganese oxide (MnO) 0.16
Phosphorus Pentoxide (P2O5) 0.14
Sulfur trioxide (SO3)  < 0.1
Loss on ignition 2.26
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mineralogical composition of soils. For instance, Si atoms 
can be found in quartz or clays, two phases with quite dis-
tinct properties when used in Cob. The online Full-Profile 
Search-Match fitting process (FPSM, http://​nanoa​ir.​dii.​unitn.​
it:​8080/​sfpm/) was used to do a preliminary quick phase 
analysis. The FPSM tests all probable crystal structures from 
the COD Database (limited to the XRF-detected elements) 
using a Rietveld fitting process, resulting in an ordered list of 
candidates for further quantification. The soil's XRD pattern 
is then Rietveld-fitted, with the preceding phase identifica-
tion taken into account. The general R-factors indicate the 
overall goodness of fit between the model and experimental 
data are: Rwp = 5.3% and Rb = 3.9%, giving goodness of fit 
of 1.8. The microstrain values are also fitted during this step 
and remain low for all the phases.

According to the quantitative phase analysis using Riet-
veld refinement, the XRD diagram is indexed by the fol-
lowing major phases: quartz (66.7%), muscovite (26.2%), 
montmorillonite (6.9%) and albite (4.2%), with minor 
occurrences of Kaolinite, goethite, rutile, illite, and huntite 
(Fig. 1, Table 6).

Quartz usually forms under rocks ignition. Quartz is com-
posed of silica tetrahedra, with all oxygen atoms bonding 
to all silicium atoms covalently [37]. This results in a tre-
mendously strong crystal with no weak planes [37]. Mus-
covite (also known as common white mica) is a hydrated 
aluminum–potassium phyllosilicate mineral. It possesses a 
nearly complete basal cleavage, resulting in incredibly thin 
laminae (sheets) that are frequently quite elastic. [5]. Mont-
morillonite is an aluminum silicate mineral with hydrated 
magnesium. Montmorillonite, often known as TOT (Tetra-
hedron/Octahedron/Tetrahedron), is a 2/1 type clay. Each 
montmorillonite sheet consists of three layers: an octahedral 
layer of Al(OH-)5O and two tetrahedral layers of SiO4 [5]. 
The ability of montmorillonites to swell when water fills 
the area between the layers is one of its most remarkable 

properties. Montmorillonite dispersed in water produces a 
stable colloidal suspension relatively quickly. On the other 
hand, this ability to swell and shrink (collapse of the clay 
layers during desiccation) causes substantial geotechnical 
issues, generating sometimes significant displacements at 
foundations due to fluctuations in sub-soil humidity. Albite 
is a feldspar mineral (silicate group, tectosilicate subgroup) 
with the formula NaAlSi3O8 and can contain traces of cal-
cium, potassium, and magnesium [5]. Goethite is an iron 
(III) oxyhydroxide mineral, specifically the α polymorph 
of the FeO(OH) compound [5]. Goethite forms through 
weathering of other iron-rich minerals. Kaolinite is a mineral 
composed of hydrated aluminum silicate and belongs to the 
phyllosilicates subgroup (Kaolinite–serpentine group) [5]. 
Rutile is an oxide mineral, the most abundant natural form 
of TiO2. Rutile is a frequent accessory mineral in metamor-
phic and igneous rocks with high temperatures and pressures 
[38]. Illite refers to a category of clay minerals that do not 
swell. Illite species are made up of three layers of phyllosili-
cates, with one layer of aluminum (Al) sandwiched between 
two layers of silicate (SiO4). Bisiallitization, a reaction that 
occurs when water is attacked under particular temperature 
and pressure circumstances, produces micas (muscovite, 
biotite) and other silicates (feldspar, feldspathoids, ortho-
sis, and others) [5]. Huntite is a carbonate mineral formed 
at low temperature. Huntite is a surface weathering product 
of magnesium-rich rocks such as serpentinites, or magnesite 
[39].

Some clays have the potential to expand the interfoliar 
gaps between their leaves. The insertion of hydrated cati-
ons (Na, Ca, etc.) gives rise to this feature, which allows 
charge compensations between layers [40]. If the clay charge 
is too high (e.g., micas or muscovite in our sample: total 
clay charge of −1 fully counterbalanced by the dehydrated 
cations (K+)), the phenomena disappears (e.g., pyrophyl-
lite, talc: total clay charge of 0, no interfoliar cation). The 

Fig. 1   XRD pattern of structural 
soil. Observed (black dots) and 
computed (red line) patterns are 
represented, together with the 
difference curve (Iobs − Icalc)
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subclass of smectites is among the expandable species, with 
a charge ranging from 0.3 to 0.8. The water inserted via the 
hydrated cations is what permits the crystalline structure 
to enlarge [40]. Due to excessive humidity, the swelling 
becomes even more critical. With a rate of 6.9%, montmo-
rillonite is the only expandable species found in our soil. The 
shrinkage properties of our soil will be influenced by the 
presence of muscovite, albite, kaolinite and illite. Because 
of their small interfoliar space, these crystals have few water 
molecules between their layers [40]. As a result, when sub-
merged in water, they have little intercrystalline swelling 
[46] and these four phases shrink far less while drying than 
smectite clays like montmorillonite [38]. The major miner-
als in both sandy and silty soils are primary minerals, which 
means they are remnants of the minerals in the original 

parent material. The quartz is the first weather-resistant 
mineral formed. Mica, feldspars, iron oxy-hydroxides, and 
limonite are other minerals that are commonly found, though 
in smaller concentrations [41].

In conclusion, the structural soil used for structural cob 
is typical of silty soil. Indeed, it is constituted of non-altered 
minerals: grains of quartz and silicates (micas, feldspars, 
smectites and serpentines).

3.5 � Lightened earth

The lightened earth is composed of kaolinite and illite with 
trace of chlorite. When combined with water, kaolinite gives 
the clay its moldability [42]. Table 7 shows the chemical 

Table 6   Refined values of lattice parameters, unit cell volume, average isotropic crystallite sizes < D > and microstrains < ε2 > 1/2

One standard deviation is indicated in parenthesis on the last digit

Phases COD reference V (%) Lattice type
 + Space group

Lattice parameters (Å) ⟨D⟩ (nm) ⟨ε2⟩1/2

Quartz 1,526,860 54.8 (5) Trigonal a = 4,914 (2) 492 (10) 5. 10–4

SiO2 P3221 c = 5,405 (2)
Muscovite 1,100,011 26.2 (5) Monoclinic a = 5,194 (1) 35 (5) 6. 10–3

KAl2(AlSi3O10)(F,OH)2 C2/c:b1 b = 9,005 (2)
c = 19,995(1)
β = 95.782 (1)

Montmorillonite 1,100,106 6.9 (2) Monoclinic a = 5,386 (2) 111 (6) 6. 10–4

(Na,Ca)0.3(Al,Mg)2Si4O10(OH)2 C2/c:b1 b = 9,039 (2)
c = 10,196(2)
β = 100.457 (2)

Albite 1,556,999 4.2 (2) Triclinic a = 8,166 (1) 43 (5) 6. 10–3

NaAlSiO3 P1 b = 12,845 (1)
c = 7,188 (1)
α = 94.240 (1)

β = 116.590 (1)
γ = 87.715

Kaolinite 1,011,045 2.1 (3) Monoclinic a = 5,185 (1) 78 (5) 6. 10–4

Al2Si2O5(OH)4 Cc:b1 b = 8,885 (1)
c = 14,526 (1)
β = 100.662 (1)

Goethite 2,211,652 2.0 (3) Orthorhombic a = 4,579 (1) 21 (1) 6. 10–4

α-FeO(OH) Pbnm: cab b = 9,945 (1)
c = 2,998 (1)

Rutile 1,532,819 1.6 (3) Tetragonal a = 4.582 (1) 92 (5) 8. 10–4

TiO2 P42/mnm c = 3.014 (2)
Illite 2,300,190 1.1 (2) Monoclinic a = 5,197 (1) 100 (5) 6. 10–4

(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(O
H)2,(H2O)]

C2/m:b1 b = 8,961 (1)
c = 10,159(1)
β = 100.970 (1)

Huntite 1,000,046 1.1 (2) Trigonal a = 9,502 (2) 123 (5) 8. 10–4

Mg3Ca(CO3)4 R32:H c = 7,821 (2)
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composition and mechanical characteristics of the used 
lightened earth.

3.6 � Soils preparation

To eliminate the absorbed water, the soils were dried in hot 
air oven at 105 °C for 24 h before being milled to a fine 
powder (< 63 µm). Previous research indicates that the earth 
has a greater particle size distribution. When producing the 
earth for the preparation of mixture, lightened and structural 
earth particles with diameters less than 2 mm must account 
for around 98 percent of total particles. Coffee lightening 
clay (CLC) and Structural Cob (SC) are bio-based compos-
ites composed of common natural materials. The insulating 
component is formed of cob, sand, fiber, and CGW, while 
the structural part is made of Clay, sand, fiber, and CGW. 
Local tap water with a pH of 7.68 (Table 8) was used to mix 
SC with coffee ground wastes (Table 9). 

The soil–fiber–CGW mixtures with the optimum thermal 
characteristics were chosen for this investigation. As a result, 
a blend of 20% coffee ground wastes for CLC and 0% for SC 
was chosen (Table 9). Indeed, the addition of CGW in the 
SC material shows a very low compressive strength com-
pared to the standard Cob. This effect is due to the nature 
of soil used which is silty soil with very low amount of 
calcium.

No fracture was observed in our specimens, and after 
28 days, their shrinkage was less than 1%. Since the ther-
mal conductivity of the 20 wt% sample was the lowest 
(0.14 W m−1 K−1), we then decided to select this latter for 
the following investigation.

3.7 � Material properties measurement

The mathematical models employed in this study require as 
input a collection of material attributes such as sorption iso-
therms, vapor resistance factors, thermal conductivity, heat 
capacity, and so on, to undertake numerical research on the 
hygrothermal behavior of CLC/SC multilayered wall. As a 
result, these parameters were determined experimentally in 
accordance with international standards, as detailed in the 
following subsections.

–	 Water vapor permeability, porosity, and vapor resist-
ance factor

Water vapor permeability describes a hygroscopic wall's 
capacity to enable vapor transport under relative humidity 
variations. Many experiments were performed to estimate 
vapor resistance factors: dry cups (NF EN ISO 12572) [43] 
corresponding to relative humidity ranges of 0%–50%. The 
basic idea behind this test is to induce relative humidity 
gradients between the two sides of a sample that is sealed 
laterally, and then monitor the daily mass fluctuation until 
it becomes constant. The porosity was calculated using the 
NF ISO 5017 standard [44]. 

The specimen's mass change is monitored until it reaches 
constant mass. The following formulae were used to com-
pute the water vapor permeability and resistance factor of 
hygroscopic low-carbon material:

Water vapor flow rate G =
m2−m1

t2−t1
 (kg s−1), where m is the 

specimen’s weight at time t.

Table 7   Chemical composition and mechanical properties of light-
ened earth

Element Wt.%

Silicon dioxide (SiO2) 59.73
Aluminum oxide (Al2O3) 20.25
Ferric oxide (Fe2O3) 6.09
Calcium oxide (CaO) 5.33
Magnesium oxide (MgO) 3.16
Sodium oxide (Na2O) 0.1
Potassium oxide (K2O) 2.05
Sulfur trioxide (SO3)  < 0.1
Phosphorus Pentoxide (P2O5)  < 0.1
Cl− 0.18
Loss on ignition 3.10
Physical properties
 Plasticity limit (%) 42.5
 Plasticity index (%) 15.3
 Absolute density (g.cm−3) 2.73

Table 8   Chemical composition 
of tap water and seawater used 
in concrete mixtures

Element Concentra-
tion in mg/l

Calcium (Ca) 88.7
Magnesium (Mg) 38.4
Sodium (Na) 42.9
Chloride (Cl) 52.0
Potassium (K) 9.1
Phosphor (P) 2.6
Fluoride (F) 0.3
Zinc (Zn) 0.2
Iron (Fe)  < 0.1
Copper (Cu)  < 0.1
Manganese (Mn)  < 0.1
Sulfates (SO4

−) 8.4
Nitrite (NO3

−) 5.2
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Water vapor permeance w =
G

A ΔPv

 (kg m−2 s−1 Pa−1), where 
ΔPv is the water vapor pressure difference across specimen, 
A is the area of specimen.
Water vapor resistance z = 1

w
 (m2 s Pa kg−1).

Water vapor permeability � = w d (kg m−1 s−1 Pa−1), where 
d is the mean thickness of specimen.
Water vapor resistance factor � =

�air

�
.

–	 Thermal conductivity, heat capacity, and dry density

Thermal conductivity changes with coffee ground wastes 
fraction (CGW) and temperature (T) for the insulating part. 
The following equation was used to simulate thermal con-
ductivity as a function of (CGW) and (T) in this work:

Where Tref is equal to 10 °C and T in the mean ambient 
temperature in °C and CGW is the fraction of coffee ground 
wastes (between 0 and 1).

This equation can ease straight determination of the 
thermal conductivity of the insulating part as a function of 
temperature and CGW content, either for an experimental 
inquiry or for numerical calculations of energy performance.

The ability of a cob wall to store thermal energy is meas-
ured by its specific heat capacity (Cp) at constant pressure. 
Cp measurements were done using the Differential Scan-
ning Calorimetry method (DSC, NETZSCH STA 449 F3), 
which follows the ISO 11357–4 standard [45]. Data have 
been collected from − 20 °C to 30 °C, with a heating rate 
of 1 °C min−1.

The BET technique was used to calculate the specific sur-
face area of the cob specimens, and a helium pycnometer 

(1)
� = [0.1511 (CGW)−0,016 + 1.9 10−3(CGW)0.984

− 1.2 10−4(CGW)1.984] (
T

Tref

)0.068,

was used to determine the absolute density of all raw materi-
als (Accupyc II 1340).

–	 Sorption isotherm curve

Due to the obvious great porosity of vegetal fibers, the 
sorption isotherm of bio-based materials is an extremely 
essential property. This particular curve illustrates the evo-
lution of water content in the whole material as a function 
of relative humidity change and at a certain temperature of 
the specimen based on the norm NF EN ISO 12571 [46]

4 � Results and discussion

4.1 � Mechanical and hygrothermal properties

To assess the hygrothermal efficiency of our constructed 
earth walls, we reviewed and compared our data to experi-
mental data obtained for various earth fiber materials such 
as lightened earth and clay of varying densities. The next 
subsections provide the determined thermal conductivities, 
densities, specific heat capacities, and isothermal sorption 
curves. Despite the fact that all of the findings are from the 
same material, the hygroscopic values for the insulating 
parts vary greatly compared to the structural part.

4.1.1 � Hygrothermal properties of the structural part 
(structural cob. SC)

Table 10 summarizes all the hygrothermal properties of the 
SC materials necessary either to experimentally investigate 
their behavior or when launching numerical simulations.

The moisture sorption curve for the used SC material 
exhibits a type II-isotherm behavior [47] with a sigmoidal 
shape (Fig. 2). Such a behavior is obviously linked to the 

Table 9   Mixture proportion of the developed structural and insulating wall parts made of coffee ground wastes

Coffee lightened clay (CLC)

0% 5% 10% 15% 20%

Lightened clay 1 0.95 0.9 0.85 0.8
Coffee grinds 0 0.05 0.1 0.15 0.2
Reed 0.25 0.25 0.25 0.25 0.25

Structural Cob (SC)
0%

Structural cob 0.67
Coffee grinds 0
Sand 0.33
Straw 0.02
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porous nature of this material and similar to earth-fiber-
containing cobs.

SC material shows a moisture content nearly two-third 
that of CLC (Fig. 4), thanks to a lower porosity in the latter, 
and as expected for an insulating component compared to a 
structural part.

4.1.2 � Hygrothermal properties of the insulating part 
(coffee lightened clay—CLC)

The thermal conductivity of the clay specimens without 
CGW addition ranges between 0.169 and 0.188 W m−1 K−1 
for temperatures from 10 °C to 40 °C (Fig. 3a). Upon 10% 
CGW addition, such values decrease from 0.169 W m−1 K−1 
to 0.156 W m−1 K−1 in the same temperature range.

These results show that incorporating CGW into the earth 
matrix reduces the thermal conductivity of the CLC. The 
most effectively tested CGW content for enhancing the mate-
rial's thermal insulation appears to be the maximum tested 
addition of 20%. Compared to ordinary cob, the addition 
of 20% CGW reduced thermal conductivity by 24.2% at 
10 °C and 24.5% at 40 °C CLC exhibited apparent porosity 
values that varied from 46 to 63% (Fig. 3b), with a simul-
taneous bulk density decrease of the material by about 26% 
(Fig. 3c). The decrease in density of CLC is obviously due to 
the added amount of coffee waste, since the density of CGW 
is much lower than that of cob, resulting in a valuable weight 
decrease at the construction stage. The addition of CGW to 
cob results in an enhanced porosity helping the reduction of 
thermal conductivity of the specimens. Pores are filled by 
air in our case, with a much lower thermal conductivity than 
the solid materials of concerns, reducing the conductivity 
of the samples.

At 10 °C, the thermal conductivity values decreased by 
up to 24.2%, indicating a greater potential for energy sav-
ings in residential applications. The thermal conductivities 
of the samples are obviously connected to their densities and 
porosities, as we observed, and further integration of CGW 
in the CLC could be studied to better investigate this effect.

According to the NF ISO 5017 standard [44], porosity is 
evaluated by quantifying the weight of a dry test piece, its 
apparent mass when submerged in a solution with which it 
has been soaked under vacuum conditions, and its mass in 
air while still saturated with the liquid. We notice a porosity 

increase from 0.45 without CGW in the CLC wall to about 
0.63 (Fig. 3b) for 20% of CGW in the formulation design 
(Table 9), representing an increase of 40%.

The specific heat capacity (Fig. 3d) also increases with 
the amount of CGW, reaching around 1075 J kg−1 K−1 for 
20% in CLC, an exceptionally large value compared to the 
earth–fiber combination. Materials with larger specific heat 
capacities are typically required to enhance construction’s 
insulation applications. As far as Cp values are concerned, 
our measurements show that soil–fiber–coffee mixtures 
perform better than typical cobs with simple soil–fiber 
combinations.

The moisture sorption curves for all CLC specimens are 
very similar (Fig. 4) and exhibit type II-isotherm behavior 
[47] as usual for characteristics of porous materials, and 
as observed in ordinary cobs. The water content decreases 
slightly upon addition of CGW in the specimens. This can 
be explained by a variety of causes, including the porosity 
of the sample, which can significantly affect the interaction 
patterns of water molecules inside the micropores. Under-
standing properly the adsorption/desorption behavior can 
lead to an accurate hypothesis when we need to derive the 
diffusion of water inside porous media based on a differ-
ent approach such as Knüdsen model. It is recommended 
to always rely on the experimental investigation of these 

Table 10   Hygrothermal 
properties of Structural Cob 
(SC 0%)

Property Value Property Value

Dry density ρ (kg m−3) 1384 Dry specific heat Cp  
(J kg−1 K−1)

865.2

Dry thermal conductivity λ (W m−1 K−1) 0.33 at 10 °C Porosity 0.34
Vapor resistance factor (dry cup) μ [-] 8.385 Water vapor permeance 

 w (kg m−2 s−1 Pa−1)
3.518 10–10

Fig. 2   Sorption curve of Structural Cob (SC with 0% of coffee 
ground wastes)
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parameters because the phenomenon behind it is a rather 
complicated to understand completely.

CLC and SC like other bio-based construction materi-
als are very hygroscopic and absorb far more water than 

Fig. 3   a Thermal conductivity, b Porosity, c Density, and specific heat d of Coffee Lightened Clay for various amounts of CGW​

Fig. 4   Moisture sorption isotherm curve of Coffee Lightened Clay for different portions

576

577

578

579



    
    

 R
EVISED PROOF

Journal : Large 43452 Article No : 579 Pages : 26 MS Code : 579 Dispatch : 24-12-2022

Archives of Civil and Mechanical Engineering _#####################_	

1 3

Page 11 of 26  _####_

traditional construction materials. CLC has low density and 
large porosity, resulting in good hygric characteristics and 
insulating capacity. The increase in coffee waste fraction 
leads to a decrease in water vapor resistance factor, from 
6.1 to 5.5 (Fig. 5).

The capacity of bio-composites to transmit water vapor 
under varied relative humidity situations is determined by 
their water vapor permeability. The water vapor permeability 
tests were carried out in accordance with NF EN ISO 12571 
[46]. The samples were sealed with molten wax and alu-
minum sheets on both sides, then the difference in relative 
humidity between their inner and outer surfaces recorded.

The water permeability (δ) of CLC samples increases 
progressively and linearly with the amount of incor-
porated coffee grounds  (Fig.  6), from typically 2.97 
10–11 kg m−1 s−1 Pa−1 to 3.27 10–11 kg m−1 s−1 Pa−1 for 0% 
and 20% CGW, respectively.

4.1.3 � Material compression strength

All the dry components were mixed up to homogene-
ity before water was progressively added while continu-
ously mixing until a homogenous fresh composite mix was 
obtained. The mix was then progressively formed layer 
by layer in either cylindrical or parallelepiped molds (see 
Fig. 7), with care taken to avoid the formation of cavita-
tion or unfilled gaps in the encased shell. The constructed 
blocks were removed from the molds one day later. Drying 
in the laboratory was operated for one month at conditions 
of 50% RH and 20 °C. Temperature and relative humidity 
were recorded on a regular basis during the drying step to 
ensure they remained stable.

Apart from the absence of adhesion between the mixture's 
ingredients, no particle breakage was seen in the compres-
sion tests performed on the cylinders. Consequently, the 

compressive, apart from the absence of adhesion between 
the mixture's ingredients, no particle retraction was seen in 
the compression tests performed on the cylinders. Conse-
quently, the compressive strength of these developed mate-
rials cannot reach the maximum recorded stress. A previ-
ous study revealed the maximum compressive strength for 
a percentage of longitudinal deformation ranging from 1.5 
to 7.5%. Cob (Fig. 8b) exhibits a maximum compression 
stress of 1.2 MPa from 2 to 4% of deformation. As expected, 
the insulating but not structural cob composite reaches such 
deformation levels for 5–10 times less stresses. However, 
incorporation of up to 15% of CGW significantly increases 
the compression strength (Fig. 8a), while the CLC sees its 
thermal conductivity decreasing (Fig. 3a)). The CGW incor-
poration then favors simultaneously mechanical and insulat-
ing properties.

The compression tests were carried out using a Schenck 
4-column press, equipped with a hydraulic cylinder and 
able to perform traction, compression, shear, and flexion 
tests with force values up to 3000 kN. It is mostly used for 
mechanical testing of construction materials applied on 11 
diameter × 22 heights cm cylindrical samples. The test setup 
was based on a displacement speed of 0.05 kN/s and a maxi-
mum displacement height of 10 cm.

The mixes of CLC with 15% CGW also show the largest 
strength after larger deformations, up to 5%, compared to 
other specimens (Fig. 8a). This behavior is due to the better 
adhesion between the ground, fibers, and lignin present in 
CGW, which stops fracture propagations. Lightened earth 
is known to undergo differential settlements and low shear 
strength and must be consolidated in order to enhance its 
mechanical properties. Finally, the stabilizing effect of CGW 
in this study could be attributed to lignin, this latter being 
the only component of the coffee biomass that includes no 
carbohydrates and is responsible for its rigid structure [48].Fig. 5   Water vapor resistance factor of CLC samples upon CGW 

additions

Fig. 6   Permeability of CLC samples upon CGW additions
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The amount of lignin in the CGW is around 24.9% of the 
dry weight of the biomass (Table 2). Due to its ability to 
absorb and hold a high quantity of water inside its structure, 
lignin is regarded a non-carbohydrate-based polymer that is 
a particularly important hydrophilic substance. Hydrolytic 
depolymerization of lignin results in lower molecular weight 
molecules with lower alkyl-aryl ether and larger phenolic 
OH contents [49]. The mass change for CLC 20% and the 
CLC 0% specimens are roughly 82 kg m−3 and 78 kg m−3, 
respectively, at 95% RH, which is of special relevance 
(Fig. 4). The adsorption curve value at 95% RH for SC speci-
men is close to 50 kg m−3 which is almost equal to 60% of 
the CLC material total adsorption capacity at the same rela-
tive humidity (Fig. 2).

Our results are in agreement with Sena da Fonseca et al. 
(2014) [50] who investigated the use of CGWs in clays for 
the production of ceramic bricks. For the ceramic samples, 
clay pastes containing 5, 10, 15, and 20% CGWs were exam-
ined. It was found that adding CGW to the mix increased 
perceived porosity and water absorption. The thermal con-
ductivity of the samples was also reduced with incorporation 

of CGWs. The addition of 20% CGW, for example, lowered 
thermal conductivity by 70%. The replacement of clay by 
CGW to produce clay bricks was also studied by Eliche-
Quesada et  al. (2011) [51]. The use of CGW up to 2% 
resulted in open cell porosity in the bricks, which reduced 
thermal insulating. However, the use of CGWs at higher 
concentrations (3–5%) resulted in lower density and higher 
porosity (closed-cell porosity), which provided higher insu-
lating capacity and appropriate mechanical resistance. The 
addition of CGW produces a decrease in density, increasing 
the open porosity of the clay but normally leads to a decrease 
in the compressive strength of the samples as the amount 
increases compared to the pristine specimen. However, 
according to our results, the addition of CGW up to 15% 
leads to an increase in compressive strength. Biopolymers, 
such as lignin, have been known as soil conditioners and 
stabilizers, which can improve the mechanical strength and 
water stability of soil aggregates [10]. By introducing the 
polymer at strategic locations into pores of a specific size 
range, their effectiveness can be greatly increased [10]. The 
larger the molecule, the more effective it is at stabilizing 

Fig. 7   Coffee lightened clay (red) and Structural cob (brown) samples used for mechanical (Ø11 cm × 22 cm) and thermal (30 × 30 × 4 cm) tests

Fig. 8   CLC (a) and SC (b) compression strength tests as a function of deformation
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soil aggregates, as one might expect. For these reasons, we 
believe that lignin penetrates into the pores as they expand 
with the addition of CGW in our CLC specimens, resulting 
in an enhancement of compression strength.

4.2 � Numerical simulation of hygrothermal behavior

4.2.1 � Geometry, boundary conditions, and mesh 
generating

The hygrothermal behavior simulations are operated in a 
2D geometry (Fig. 9), on which boundary conditions on a 
precise enough mesh are described. Any CAD (Computer-
Aided Design) software, used for the pre-processing proce-
dure, must have the adaptable numeric format in order to 
produce the appropriate geometry and boundary conditions 
and to perfectly match with the energy simulation software 
needs.

The geometric data generated in "Native CAD" format 
must be changed to a format compatible with the WUFI Plus 
application, such as WPS. All pre-processors of building 
energy simulation software can read CAD data in differ-
ent formats. The program must list the format as one of the 
eligible formats.

The boundary conditions of any fundamental issue are 
used to establish the upper and lower bounds of the field 
variables. These are the operational conditions that regu-
late the characteristics of these parameters. A decent set 
of boundary conditions is just as important as a great test 
setup. Subjectively, a boundary condition indicates that "it 
is known what happens" on a specific frontier as shown in 
Figs. 9 and 11 in terms of temperature and relative humidity 
variations at the defined outside surface boundary condition.

We used two different climatic condition profiles to vali-
date our model (Fig. 10, taken from [21]), imposing time 
fluctuations in temperature and relative humidity to the 
external surfaces of the walls, with applied periodicities 
of 95 h and 500 h, respectively. The inside surfaces were 
exposed to constant ambient conditions (T = 23 °C and 
RH = 50%).

At the boundary, we are restricted by the experimental 
setup's constraints, ensuring that the theoretical condition is 
compatible with the actual simulations’ arrangement.

In this work we consider the case of heat and mass 
convection transfers at boundaries, neglecting radiative 
exchanges and rain loads on the inner and outer walls. The 
Neumann boundary conditions are written as follows.

Inside surface:

Outside surface:

δp is the water vapor permeability of the porous material, 
hc is the convective transfer coefficient. The water vapor con-
vection coefficient βv is defined automatically by the WUFI 
software based on the wall quality and rugosity.

(2)−�
�T

�x

|
|
|
|out

= hc,out

(
Tair,out − Tsurface,out

)

(3)−�p

�P

�x

|||
|out

= �v,out

(
Pvap,air,out − Pvap,surface,out

)

(4)−�
�T

�x

|||
|in

= hc,in

(
Tair,in − Tsurface,in

)

(5)−�p

�P

�x

|||
|in

= �v,in

(
Pvap,air,in − Pvap,surface,in

)

Fig. 9   Scheme of geometry and boundary conditions for numerical simulation
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The starting state of the system is at initial equilibrium 
with 23  °C and 50% RH. External conditions are then 
applied in accordance to the T and RH scenario, while 
the inside variables are released. Before commencing any 
simulation, the system is always reconditioned to its initial 
boundary conditions (23 °C and 50% for T&RH).

We used a 1D meshing for the simulation of temperature 
and humidity gradients inside the hygroscopic wall (Fig. 11). 
The mesh step is not constant to represent this gradient with 
the same level of accuracy near the boundaries and farer 
from them. Small cells or elements are automatically created 
by the software to fill the volume to simulate the coupled 
heat and moisture transfer (Fig. 11). They form a mesh, with 
each cell representing a separate region that represents the 
temperature and humidity locally. Creating a high-quality 
mesh is critical for obtaining accurate solutions and ensuring 
numerical stability. In the case of auto-generating, software 
engineers guarantee that a good mesh number is generated 
so that the solution's stability and convergence can be effi-
ciently attained.

4.2.2 � Mathematical modeling and sorption linearization 
due to hysteresis effect

•	 Künzel model

In our case study, the modeling approach simulates the 
hygrothermal behavior of hygroscopic building envelopes 
based on the Künzel model. These latter attempts to use the 
terms of relative humidity Φ and temperature T gradients as 
the primary driving forces to describe the coupled heat and 
moisture transfers in building components [52]. The used 
mass transport and heat transfer model equations are writ-
ten as:

where (dw/dΦ) is the moisture storage capacity of the porous 
material which can be determined from the moisture sorp-
tion curve of the considered material, DΦ is the liquid 

(6)
dw

d�

��

�t
=

�

�x

(

D�

��

�x
+ �p

�

�x

(
� psat

)
)

Fig. 10   Outdoor and indoor climatic boundary conditions for the isothermal (RH = 50%) and isohydric (T = 23 °C) scenario, Alioua et al. [21] 
(Refitted from original)

Fig. 11   1D wall meshing along the X axis

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783



    
    

 R
EVISED PROOF

Journal : Large 43452 Article No : 579 Pages : 26 MS Code : 579 Dispatch : 24-12-2022

Archives of Civil and Mechanical Engineering _#####################_	

1 3

Page 15 of 26  _####_

diffusion coefficient, δp is the water vapor permeability of 
the porous material, Φ is the relative humidity and psat is the 
water vapor saturation pressure.

where (dH/dT) is the heat storage capacity of the porous 
material, λT is the thermal conductivity and hv is the evapora-
tion enthalpy of water.

•	 Hysteresis effect

Porous materials exhibit significant moisture sorption 
curve hysteresis (Fig. 5). Capillary pressures keep a signifi-
cant amount of water inside pores throughout consecutive 
wetting and drying operations. Several models have been 
developed in the literature to calculate intermediate varia-
tions in water content between the major adsorption–desorp-
tion curves in order to incorporate this feature in heat and 
mass transfer calculations (Hamdaoui et al. [22]).

Until recently, no simulation program has integrated hys-
teresis effects in its computational methods. When calculat-
ing the heat and moisture equations, any stated hysteresis 
model must be solved simultaneously. Therefore, a coupling 
with another software is mandatory and generally very com-
plicated, requiring advanced programming skill. Also, this 
method is very computing time demanding.

We propose to ease the simulation parameterization by 
simplifying the curve sorption while taking into account 
the hysteresis phenomenon. Based on previous studies on 
the effect of hysteresis on different materials construction, 

(7)
dH

dT

�T

�t
=

�

�x

(
�T

�T

�x

)
+ hv

�

�x

(
�p

�

�x

(
� psat

))

one can notice that, for type II sorption curves materials 
and whatever their adsorption/desorption potential capacity, 
the same material’s behavior is observed: after several wet-
ting–drying cycles (and for RH in the 30%–80% range, the 
sorption curve tends to become linear (Fig. 12). This part is 
described in detail in the following section.

•	 Sorption linearization due to hysteresis effect

Several sorption hysteresis models are used (Hamdaoui 
et al. [22]), for physico-chemically interacting particles in 
small volumes and other phenomena like the ink-bottle pore 
effect. These models have shown their efficiency in improv-
ing the outputs of numerical results. However, their main 
disadvantages lie in both computation times and linkage to 
specific configurations and scenario.

The application of conceptual hysteresis models fre-
quently results in a hysteretic behavior known as "pumping 
effect". It represents the fact that the quantitative scanning 
sorption curves do not follow the closure fundamental idea. 
In other words, there is a distinct water content value for 
each extreme of relative humidity during a series of adsorp-
tion and desorption cycles. As a result, a material that has 
been wetted and dried multiple times should generally 
recover to its original humidity levels and water content.

Promis et al. [26] used the Comsol Multiphysics software 
to analyze experimentally and computationally the hygro-
thermal response of hemp and rape straw concretes, taking 
into consideration the hysteresis phenomena. The authors 
demonstrated the evolution of water content as a function of 
RH in rape straw concretes, using a hysteresis model built 

Fig. 12   Water vapor sorption hysteresis phenomena behavior of Promis et al. [26]
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upon the measured material's adsorption curve (Fig. 12). For 
a relative humidity range of 50%–75%, the moisture hys-
teresis is practically on the adsorption curve and takes on 
a linear character with more cycles. We conclude based on 
the study of Promis et al. [26] that in the medium humidity 
range, hysteresis appears to have a minor impact on hydric 
behavior for relative humidity less than 80% and more than 
50% in this instance (Fig. 12a). The use of a linear adsorp-
tion curve can yield satisfactory results.

For similar materials Lelievre et al. [27] analyzed heat 
and moisture transport numerically by accounting for hys-
teresis and phase change effects. The authors demonstrate 
that Mualem's model appears to be more suited than Ped-
ersen's to replicate sorption–desorption cycles (Fig. 13b). 
Hence, their sorption curve takes on a linear appearance 
after numerous cycles of adsorption/desorption for a humid-
ity margin included between 40 and 60%, as illustrated in 
Fig. 13a.

Maaroufi et al., [53] on the other hand, worked on dem-
onstrating the effect of the sorption hysteresis phenomena 
on heat and moisture transport in an expanded polystyrene 
concrete (Fig. 14a). They developed a coupled heat and mass 
transport model that takes into consideration the sorption 
hysteresis phenomena. Their numerical outputs with and 
without the hysteresis phenomena were highlighted and 
compared to experiment data, demonstrating that taking the 
hysteresis phenomenon into account provides for a better 
understanding of the hygrothermal behavior of construction 
materials. In comparison to other studies, their hysteresis 
model was tested on a wide margin of relative humidity that 
reaches a high percentage close to 95%, where hygroscopic 

medium will undergo saturation in terms of water content, 
and which explains why the average line of the adsorption/
desorption curves is located almost in the center and not 
close to the main adsorption curve. Although the most rel-
evant is that with a large number of humidification and dehu-
midification cycles the sorption curve tends to take a linear 
variation (Fig. 14b).

A simplified hysteresis model is proposed by Rémond 
et al. [54], suggesting a unique formulation to assess mois-
ture sorption hysteresis in lignocellulosic materials by intro-
ducing the concept of a gripped box. Their model simply 
requires two modifiable parameters to be matched to the 
experimental data. The curves of a straight line through the 
mean sorption curve can describe the hysteresis phenomena 
between a defined interval of relative humidity and can be 
shifted according to the current state. One point is defined 
on the adsorption curve and the other one on the desorption 
curve passing by the mean sorption curve. This approach 
is limited if we have a plenty of wetting/drying cycle for 
a small relative humidity marge less than 20%, situated 
between 30 and 80% of relative humidity. Where the reverse 
point from desorption toward the adsorption cycle can be 
situated much below the desorption curve which demon-
strated and validated in many studies [55, 56]. Their model 
needs to be coupled in existing computational software that 
can result in an increased computation time depending on 
the coupling method.

We suggest in this paper a method for linearizing the hys-
teresis cycles based on previous research works using the 
two points at 80% and 30% of relative humidity for the first 
adsorption curve.

Fig. 13   Water vapor sorption hysteresis phenomena behavior of Lelievre et al. [27]
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The first point of the linearized curve at 80% RH is on the 
first adsorption curve (Annex 1), generally, the RH inside 
the material in practical situation is far from being saturated 
with water content. It is assumed that the first hysteresis 
cycle starts with adsorption and then proceeds to desorp-
tion. For the second point of the linearized curve at 30% RH, 
the point takes on the value of water content at this humid-
ity value by adding a ΔW % of difference between the first 
adsorption and desorption curves at 30% (12% for Mualem 
model and 10% for Promis model).

We validated our approach on Alioua et al. [21] data, at 
various depths (3, 7.5 and 12.5 cm). For this purpose, the 
linearized sorption curve of Alioua et al. [21] is obtained 
according to the following method where  the first point 
located at 80% and the second at 30% RH, by adding a ΔW 
equal to 15%. The choice of the 15% value was made after a 
sensitivity study from 10 to 20%. The value of 15% represent 
the best configuration. The results found for this approach 
after linearization are compared with the results found by 
Alioua et al. [21] (with and without hysteresis effect) in the 
following section. The hygrothermal properties of Date Palm 
Concrete (DPC) are presented in the Table 11.

The linearized mathematical equation is written as below 
to determine the water content of the material based on the 
fitted sorption curve with GAB model:

where Φ is the relative humidity situated between 0.3 and 
0.8, GABads is the first main adsorption curve fitted with 

(8)

Wlin(�) =

[
2 GABads(80%) −

17

10
GABads(30%) −

3

10
GABdes(30%)

]
(�)

+

[
68

50
GABads(30%) +

12

50
GABdes(30%) −

3

5
GABads(80%)

]

GAB model and GABdes is the first main desorption curve 
fitted with the GAB model also.

Figure 15 represents the methodology of the work con-
ducted on the experimental part to investigate the mechani-
cal and hygrothermal properties of bio-based material. 
Numerical analysis was initiated to study the energy per-
formance of the material by simplifying the modeling and 
taking into account the influence of hysteresis under chal-
lenging climate conditions.

4.2.3 � Model validation of linearization effect on sorption 
curve with experimental data 

Among the first researchers, Mendes et al. [60] are one of 
those who incorporated a linearization approach to simplify 
a difficult physical phenomena and accelerate the computa-
tion of hygrothermal behavior. The authors linearized the 
vapor exchange between the wall and the ambient air. This 
approach reduces the amount of time it takes to calculate the 
desired numerical outputs. In our case, we have worked on 
the linearization of the sorption curve based on the impact 
of the hysteresis effect for frequent adsorption and desorp-
tion cycles. The sorption curve has been linearized based 
on the following of multiple wetting and drying operations 
for a specified interval of relative humidity which must be 
situated between 30 and 80%.

We considered the linearization also, for a sorption curve 
of type II-isotherm [47] and for a material porosity situated 
between 0.3 and 0.9. Thus, the dynamics of heat and mois-
ture transmission in DPC (Date Palm Concrete) [21], CLC 
(Coffee lightened Clay), and SC (Structural Cob) have been 
investigated. During the experiments, temperature (T) and 

Fig. 14   Water vapor sorption hysteresis phenomena behavior of Maaroufi et al. [53]
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relative humidity (RH) distributions across the wall thick-
ness, as well as air parameters (T&RH) at the inside/outside 
environment, were continually recorded.

•	 Scenario 1. Temperature variation with constant 
humidity

Using the temperature profile of Scenario 1 (Fig. 10a), 
importing temperature and relative humidity values at 

boundaries (from the experiments [21, 59] and taking ini-
tial conditions (T = 23 °C and RH = 50%), we could simulate 
(Fig. 16) the temperature fluctuations at depths from 3 to 
12.5 cm within the wall. The temperature profiles are better 
reproduced when accounting for linearized hysteresis than 
without, specifically for larger depths. However, in our case, 
the maximum differences between numerical and experi-
mental results are obtained at 3 cm of depth and are equal 
to 2 °C and 2.8 °C for the larger and lower temperatures, 

Table 11   Hygrothermal properties of Date Palm Concrete (DPC)  (Taken from Alioua et al. study [21])

Property Value References Property Value References

Dry density (kg m−3) 954 [57] Dry specific heat (J kg−1 K−1) 1500 [58]
Dry thermal conductivity
(W m−1 K−1)

0.185 [57] Moisture supplement of thermal conductivity (− ) 10.190 [57]

Vapor resistance factor
(dry cup) [− ]

6.310 [59] Vapor resistance factor (− ) 5.570 [58]

Water sorption coefficient
[kg m−2 s−1/2]

0.165 [57] Water content at free saturation (kg m−3) 429 [57]

Fig. 15   Conceptual study plan
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respectively. The root mean square error RMSE (Table 12) 
also are in favor of the linearization model concerning tem-
perature estimates, even at 3 cm depth, though to a mess 
extent. The linearization for the two larger depths reduced 
the errors almost by half.

Fig. 16   Numerical and experimental temperature variations at various depths within the DPC wall by taken into account the linearisation of hys-
teresis effect

Table 12   Model comparison and validation for scenario 1

Depth (cm) RMSE “Without hys-
teresis”

RMSE “With 
linearized sorption 
curve”

12.5 1.024 0.575
7.5 1.409 0.862
3.0 2.076 2.042
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•	 Scenario 2. Humidity variation with isotherm condi-
tion

 With the RH profile of Scenario 2 (Figure 10b), simula-
tions without hysteresis effect are always underestimating 
water uptaking during the adsorption curve (Figure 17), 
compared to experimental data. At desorption, the curves 

Fig. 17   Numerical and experimental humidity variations at various depths within the DPC wall by taken into account the linearization of hyster-
esis effect

Table 13   Model comparison and validation for scenario 2

Depth (cm) RMSE “With-
out hysteresis”

RMSE “With 
hysteresis”

RMSE “With 
linearized sorption 
curve”

12.5 3.535 1.572 1.564
7.5 5.586 2.389 1.529
3.0 2.025 2.008 2.325
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without hysteresis (Figure 17a) maintain too much water 
inside the wall compared to measurements. When the lin-
earization approximation of the sorption curve is included 
in the simulations, the simulated RH profiles improve sig-
nificantly at intermediate depths. For the largest depth of 

12.5 cm, linearization slightly overestimates water uptake 
during adsorption, then does not significantly deviate from 
the usual hysteresis simulation at desorption. At the smallest 
depth, linearization tends to decrease water uptake, which 
favors a better RH simulation during adsorption, but a rather 
high-water desorption compared to experiments and usual 
hysteresis simulation. These tendencies are reflected in the 
overall RMSE values (Table 13) with a largest difference 
between experience and simulations for the two largest 
depths, while at 3 cm wall depth, as depicted by Alioua et al 
[21], the hysteresis effect does not have a significant effect on 
the accuracy, an also valid observation with our linearization 
approach.

4.2.4 � Hygrothermal performance evaluation of CLC and SC 
wall 

WUFI Plus’ simulations were applied to a double wall struc-
ture (Fig. 18) composed of the SC and CLC components 

Fig. 18   Schematics of the multilayer wall composed of SC + CLC 
and the measured points

Fig. 19   Numerical investigation of temperature variations at various depths within the SC + CLC multilayered wall by considered the lineariza-
tion of hysteresis effect

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010



    
    

 R
EVISED PROOF

Journal : Large 43452 Article No : 579 Pages : 26 MS Code : 579 Dispatch : 24-12-2022

	 Archives of Civil and Mechanical Engineering _#####################_

1 3

_####_  Page 22 of 26

previously described, with corresponding sorption iso-
therms, vapor resistance factors, thermal conductivity and 
heat capacity (Figs. 2, 3 and 4).

•	 Scenario 1. Temperature variation with constant 
humidity

Thermal behavior of the SC and CLC components of the 
wall are different especially at the wall’s surfaces. For the 
CLC component (Fig. 19a), a remarkable drop in amplitude 
is observed between the two wall boundaries where we can 
see an amplitude delay in the thermal behavior of the wall 
caused by the rapid transition in outside temperature. After 
12 h, the CLC at 7 cm closer to the outside environment 
undergoes a strong evolution of temperature that reaches 
38.5 °C, while only 34 °C is reached deeper in the wall, at 
2 cm (Fig. 19a).

A slight maximum temperature difference exists 
(Fig. 19c), between the 2 cm CLC and 4 cm SC measured 
points, because of their relative distance. Also, while the 
internal surface is exposed to the variable temperature. The 
temperature decreases again at 2 cm for the SC wall and 
reaches 32.9 °C (Fig. 19b), compared to the 7 cm of CLC 
wall, which makes us gain a decrease of 5.6 °C compared to 
the external temperature value.

•	 Scenario 2. Humidity variation with isotherm condi-
tion

In this scenario, the inside temperature is kept constant 
(23 °C) while the outside wall subjected to RH variations. 
The outside wall is exposed to 216 h long RH plateaus of 
75% and 33% successively. Simulated relative humidity evo-
lutions inside the walls at the four depths. (Fig. 20b) show 
a lower amplitude of variations closer to the inside in the 

SC wall. Furthermore, a remarkable delay of response is 
observed between 2 and 4 cm depths SC, as a sign for a 
larger impermeability of the structural wall.

After 216 h, the SC at 2 cm absorbs the maximum amount 
of moisture (60%), while at 4 cm, material continues to 
absorb moisture, which explains why the two depths do 
not have the same sorption. This phenomenon has not been 
noted for DCP [59]. Furthermore, during the desorption 
phase, the RH decreases more rapidly at 4 cm, compared 
to the 2 cm.

A similar trend is observed for the CLC (Fig. 20a), a 
delay of response is observed between 2 and 7 cm for RH 
wave fronts, however less pronounced than in the SC wall 
since CLC exhibits a larger water permeability. During the 
sorption phase, the relative humidity increases more rapidly 
with a maximum of 65% at the location near the outside of 
the wall, compared to the other location deeper in the wall. 
As for SC, the CLC wall does not have the same absorption 

Fig. 20   Numerical investigation of humidity variations at various depths within the SC + CLC multilayered wall using linearization of the RH 
hysteresis cycle

Fig. 21   Moisture behavior of the interface between CLC and SC 
walls
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and desorption process for the two depths. The junction 
between CLC and SC is influenced by both indoor and 
outdoor humidity variations. Figure 21 shows that, unlike 
the results in Fig. 20 that the RH variations for the two 
4 cm (SC) and 2 cm (CLC) positions are exhibiting close 
hygroscopic behaviors, with a slight difference in humidity 
between the two positions only due to their closely locations 
in the double wall structure.

•	 Heat flow transfer through the CLC + SC wall for 
isotherm and isohydric scenario

Hygrothermal transfer generates a flow density which is usu-
ally not quantified. For this purpose, Fig. 22 shows the heat 
flux density generated for the SC + CLC wall for 0% and 
20% of coffee ground wastes in the insulating CLC compo-
nent. Considering the variations of temperature (Fig. 22a) 
and humidity (Fig. 22b), these simulations show that the 

CLC + SC wall with CGW, allows less heat to pass than 
without the inclusion of CGW in the material due to the 
high gradient in temperature and humidity. This difference 
for the case of Fig. 22a, is due to the decrease in thermal 
conductivity of the wall by the coffee ground wastes. A dif-
ferent trend is observed on the Fig. 22b, where the heat flux 
density gain increases basically (with CGW included) due to 
the porosity increased by coffee ground wastes (see Fig. 3b). 
Thus, the wall captures more moisture upon CGW addition, 
due to the phase change enthalpy of water, this will be added 
as a form of energy for the wall.

Simulation results reproduce dynamic variations of the heat 
flux through the SC + CLC wall façade for isotherm and iso-
hydric scenario. In the Fig. 22a, we kept the relative humidity 
constant at 50% and the temperature was varied between 18 
and 40°c. We observed two phases: (i) the heat peak phase 
related to the temperature peak and (ii) the heat release phase 
when the temperature drops. In the first phase, we see that the 

Fig. 22   Quantitative analysis of the energy performance of multilayered wall (SC + CLC) for isotherm (a) and isohydric (b) scenarios
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peak is higher in the case of CLC wall with 0% coffee ground 
wastes (7.48 kW m−2) than in the case with 20% coffee ground 
wastes (6.62 kW m−2). On the other hand, the opposite effect 
is observed when the temperature drops. The wall with 20% 
coffee ground wastes releases less heat than the wall with 0% 
coffee grounds. The ability to store and release heat is related 
to the improvement of the heat capacity and thermal conduc-
tivity of the wall by CGW. This difference generates a dynamic 
variation of 12% in the quantity of heat passing through the 
wall over a well-defined time interval (at time 3 h).

For the second investigation (Fig. 22b), we applied an 
isotherm scenario where we keep a constant temperature of 
air on both sides, at 23 °C, and variating only the relative 
humidity between 33 and 75% for several cycles to better 
understand the energy behavior in term of moisture resi-
dues. This last one gives us the possibility to know the heat 
flow transmitted through a wall when imposing a moisture 
gradient between two surfaces and also to know the effect 
of the difference of porosity on the heat flow transmitted. As 
shown in the Fig. 22b. we find that for a dynamic change in 
relative humidity, the heat flux density registers a peak of 
1.61 kW m−2 and 1.53 kW m−2, respectively, for a percent-
age of 20% and 0% of coffee ground wastes in the CLC wall 
formulation. This heat peak is explained by the difference 
in the internal structure in terms of material porosity. For 
the CLC wall with 0% and 20% of coffee ground wastes, we 
observe on Fig. 3b that the porosity varies from 0.46 to 0.63 
which represents an increase of 37%. This difference gener-
ates a dynamic variation of 8% of the amount of heat density 
flux that passes through the wall over a defined time range. 
We conclude that addition of CGW increases the porosity 
which facilitates the absorption/desorption cycle and lets 
more heat pass through due to the enthalpy of phase change.

5 � Conclusion

The mechanical and hygrothermal assessment of cob walls 
incorporating CGW at various concentration levels was the 
focus of this research. The addition of up to 20% CGW to the 
insulating cob matrix increases the material's performance, 
both in terms of heat storage capacity, thermal insulation and 
compressive strength. When compared to conventional cob 
building materials, the compressive strength and hygrother-
mal performance of CLC material containing CGW results 
in a reduction of the cob wall thickness. The widespread 
valorization of CGW could significantly contribute to the 
achievement of sustainable development goals, provided 
such spares do not get a better use elsewhere.

We analyzed numerically the effect of sorption isotherm 
linearization on the hygrothermal behavior of a hygroscopic 
wall built of low-carbon material and validated the approach 
experimentally. Hysteresis linearization can help thermal 

engineers to achieve more accurate building performance 
analyses in a fast and efficient way. The suggested approach 
has a decent accuracy for various depths for both heat and 
mass transfers. When the linearization of the hysteretic 
sorption curve is included in the simulations, the accuracy 
improves significantly.
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